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PRIMARINESS OF SPACES OF CONTINUOUS 
FUNCTIONS ON ORDINALS 

BY 

D. ALSPACH* AND Y. BENYAMINI* 

ABSTRACT 

Necessary and sufficient conditions on an ordinal a are given, such that C (a )  is 
primary, and that the general linear group of C (a )  is contractible. In particular 
C (a )  possesses both of these properties if ot is countable. 

Introduction 

A Banach space X is said to be primary, if whenever X is isomorphic to 

Y ~ Z, either Y or Z is isomorphic to X. 

Lindenstrauss and Pelczynski [9] have shown that C(K)  is primary when K is 

an uncountable compact metric space. They conjectured that the same holds if K 

is compact and countable. By a classical theorem of Mazurkiewicz and Sierpinski 

[11], every compact countable Hausdorff space is homeomorphic to [1, a] ,  for 

some countable ordinal a, where [1, a]  is the space of all ordinals less than or 

equal to a, endowed with the order topology. We are thus led to study 

C ( a ) - - t h e  space of all continuous functions on [1, a] .  

Essential to our work is the following complete isomorphic classification of the 

spaces C(a)  (see [1], [8], [16] for earlier partial results). (We identify cardinals 

with initial ordinals. A cardinal ~ is regular if it is not the limit of less than s r 

ordinals smaller than st.) 

CLASSIFICATION THEOREM ([4], [7]). Let a < [3 be two ordinals of the same 

cardinatity, and let ~ be the first ordinal of this cardinality. Write a = ~l  + P 

(p < ~ ). Then there are two cases: 
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(1) If the cardinality of a is a uncountable regular cardinal and n <= ~, then 

C(a )  is isomorphic to C(/3) iff when we write/3 = ~rll + pl (pl < ~), then r I and rl, 

have the same cardinality. 

(2) I[ot is not as above, then C(ol) is isomorphic to C(/3) iff fl < ol ~" (where to is 

the first infinite ordinal). 

(If o~ and /3 have different cardinalities, C(o~) and C(/3) are certainly not 

isomorphic.) 

We can now formulate our results: 

THEOREM 1. C(y) is not primary iff it is isomorphic to C(~ . n) where ~ is an 

uncountable regular cardinal and 1 < n < to. 

In particular if y is countable we get that C ( y )  is primary, verifying the above 

conjecture of Lindenstrauss and Pelczynski. This case was independently proved 

by Billard [2]. 
As a by-product of our techniques we also get a necessary and sufficient 

condition that the general linear group of C(a)  is contractible. (See the survey 

paper [12] for information on contractibility of the general linear group of 

Banach spaces.) 

THEOREM 2. The general linear group of C(c~) is not contractible if] C(a)  is 

isomorphic to C(~ �9 n), where ~ is an uncountable regular cardinal and 1 <= n < to. 

In this case GL(C(~: �9 n)) has the same homotopy type as GL(n, F) (where F is 

the scalar field, real or complex). 

It should be noted that if ~ is an uncountable regular cardinal, then C(~) is a 

primary space whose general linear group is not contractible. This and James' 

space J seem to be the first examples of such spaces (see [3] for the recent result 

that J is primary). 
We now describe briefly the organization of this paper. In the first section we 

describe some canonical ways to embed C(a)  in C(/3) and derive some 

properties of these embeddings. We also give a very simple but useful sufficient 

condition that an operator on C(fl) is an isomorphism on some subspace 

isomorphic to.C(a) .  We end this section by formulating the two basic results 

used in the proofs of the theorems. The first is a "disjointness lemma" similar to 

the one proved by Rosenthal [15]. Its proof and another variation of this iemma 

will be given in the fourth section. The second result is the key to the inductive 

process and its proof will be given in the last three sections. Assuming these two 

results we shall prove Theorem 1 in the second section and Theorem 2 in the 
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third section. The reader who is interested only in the separable case may omit 

the first part of section 5, Lemmas 7.2, 7.3 and the part of the proof of Lemma 

7.1 where the case of uncountable cofinality is considered. 

We shall use standard notation. Unexplained terms and results on Banach 

spaces can be found in [10], on topology in [6] and on ordinals and their 

arithmetic in [17]. 

If A is a subset of a topological space, we shall denote  by A ~ the set of its 

cluster points. Inductively we define A ~a§ = (At*~) t~ and if a is a limit ordinal 

A t~ = A~<~A t~. If A t~ is finite and has cardinality n, then (a, n) is called the 

characteristic system of A. 

If A is a compact subset of a space of ordinals then the relative topology on A 

agrees with the order topology on A as an ordered set. In this case there is an a 

such that A ~ is finite and we denote  this a by r (A  ) and call it the type of A.  If A 

and B are compact subsets of a space of ordinals, they are homeomorphic  ift 

they have the same characteristic system. Since we shall consider sets of ordinals 

in their order  topology, and this topology is determined by convergence of nets 

directed over ordinals, we shall use only such nets. 

The cofinality of a limit ordinal a is the minimal cardinality of a (nontrivial) 

net converging to a. 

We shall treat real valued continuous functions only. The proofs in the 

complex case require very minor modifications if any. 

w Preliminaries 

Let A be a closed subset of [1, a] .  We shall denote by C ( a  I A )  the subspace 

of C(a)  of all functions that vanish on A. By Co(A) we shall denote  the space of 

all continuous functions on A that vanish at the last point of A. In particular, 

Co(a) is the space of continuous functions on [1, a ]  that vanish at a. If A = [a, b] 

we shall denote C(A)  (resp. Co(A)) by C(a, b) (resp. Co(a, b)). The first lemma 

summarizes some properties of these spaces. 

LEMMA 1.1. (a) For every a there is an isomorphism T of C(a)  onto Co(a) 
such that II Tll II T-~II <= 3. 

(b) For every a there is a projection P from C(a) onto Co(a) with II P II 2. 
(c) For every closed subset A of [1, a ]  there is a norm one simultaneous 

extension operator S from C(A)  into C(a), such that S(Co(A))CCo(a). In 

particular C(a) = S( C(A ))~]) C(a I A).  
(d) C(a ]A)  is isometric to (Eo~AGCo(a- ,a) )o~C(b ,a) ,  where b = 

sup{a E A } + 1, and for each a E A, a-  is defined by 
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_ f 1 if a is the first element in A 
a = 

sup{b + 1: b E A, b < a} otherwise. 

(Note that if a is a limit point of A, then a -  = a and Co(a-, a) is trivial.) 

PROOF. The proofs of (a) and (b) are straight-forward and are left to the 

reader. To prove (c) let f ~ C(A) and define for any fl <= a, Sf(/3) = f(y) where 

inf{[/3, a ]  n A} if [/3, a]  n A ~ O  

3 '=  L last element in A if [/3, a ]  n A = 0 .  

The required properties of S are easily checked, and if we denote by 

R : C(a)--~ C(A) the restriction operator,  then SR is a projection of C(c~) onto 

S(C(A)) whose kernel is exactly C ( a l A  ). 
To prove (d) notice that if f E C(a I A)  and e > 0, there are at most finitely 

many a E A such that Ill Ita-.aJll ~ e. For otherwise we could find a sequence of 

points al < al < a2 < a2 < �9 �9 �9 with aj E A and [f(aj)  I -> e, but then a = sup a, = 

sup aj is in A, since A is closed. Thus 0 = f (a )~  limf(a~) contradicting the 

continuity of f. Thus every f E C(a [ A) can be identified with an element in 

(E,~A@ Co(a-, a))o@ C(b, a). The converse is trivial. 

To prove Theorem 1 we shall study general linear operators on C(3") for 

certain types of ordinals 3'- We shall find conditions to ensure that an operator  

T: C(3")---~ C(3") restricts to an isomorphism on a subspace of C(3") isomorphic 

to C(3"). We shall then apply this result and find that at least one of the 

projections P and I - P  satisfies the required conditions. 

The space to which T restricts as an isomorphism is of a very simple type: It is 

the range of a norm one simultaneous extension operator  S: C(A)--* C(3") for 

some subset A of [1, 3'], homeomorphic  to [1, y]. 

The behaviour of T on S(C(A)) is also very simple: For some e > 0  and a 

number c, ITSf(a)-cf(a)] <= e [[f[] for all f ~ C(A) and a E A, i.e. up to e, T 

acts like multiplication by c on A. 

The next definition and lemma will formalize the above. 

DEFINITION. Let A be a closed subset of [1, a ] ,  and X a closed subspace of 

C(a). We say that X is determined by A if RA, the restriction operator  from 

C(a) to C(A) ,  is an isometry of X onto RA(X). 

DEFINITION. Let A be a closed subset of [1, a] ,  T a bounded linear operator  

on C(a), c a real number and e > 0. We say that a closed subspace X of C(a) is 

(c, e)  preserved by T over A, if for all a E A and f E X, l(Tf)(a ) - cf(a )I < e It f [[- 



68 D. ALSPACH AND Y. BENYAMINI Israel J. Math. 

The next lemma gives some properties of spaces that are determined or 

preserved over some set A. 

LEMMA 1.2. (a) Let X be determined over A, and B a closed subset of A. If  

RA (X) = Co(A ) (resp. RA (X) = C(A )), then there is a closed subspace Y of X 

which is determined over B and such that RB (Y)  = Co(B) (resp. Re (Y)  = C(B )). 

(b) Let X be determined over A and T a bounded linear operator on C(a ) such 

that X is (c,e)-preserved by T over A, where c > 3 e > 0 .  Then T is an 

isomorphism of X onto TX. 

(c) Let X, A, T, c, e be as in (b). If  RA(X)=Co(A) ,  then TX is a 

complemented subspace of Co(a). 

(d) Let A = U A,  where the A, ' s  are closed and contained in disjoint closed 

intervals. Let X be determined over A and T a bounded linear operator on C(ol ) 

such that X is (c,e) preserved by T over A where c > 3e >0 .  If  R A ( X ) =  

{ f E C ( a ) :  f is supported in A and flA,~Co(ae) for all (~} then T is an 

isomorphism on X and TX is a complemented subspace of C(a ), isomorphic to 

(E, ~) Co(A,))o. 

PROOF. Let S: Co(B)~Co(A)  (resp. S: C ( B ) ~ C ( A ) )  be a norm one 

simultaneous extension operator, and define Y=(RA[x)-IS(Co(B)) (resp. 

Y=(RAIx)-IS(C(B))) .  This proves (a). To prove (b) let f ~ X .  Since X is 

determined over A, there is a point a E A such that Ilfll-- If(a)l, then 

II Zfl[ ~ I (Tf)(a )[ ~ [ cf(a )l - I(Tf)(a ) -  cf(a )l 

c I l f l l -  E Ilffl ~ 2E Ilfll- 

Since clearly II Tfll <= II TII Ilfll, T is an isomorphism on X. 
To prove (c), let S be the simultaneous extension operator from Co(A) to 

Co(a) as in Lemma 1.1(c). By the argument of (b) RAT Ix is an isomorphism of X 

into Co(A) which is, as is easy to see, in fact onto Co(A). Thus there is an 

isomorphism W from S(Co(A)) onto TX such that WSRA [rx is the identity on 

TX. Define the projection P from C(a) onto TX by P = WSRA. 

(d) follows by the same arguments as (b) and (c). 

We are now ready for the two main propositions. 

PROPOSITION 1. (The disjointness lemma) Let T be a bounded linear operator 

on C(a). Let { X ~ } ~  and {Aa}or satisfy: 
(a) X~ is a closed subspace of C(a), As is a closed subset of [1, a] .  

(b) If  y ~ fl, f~ E X ,  fo E X~, then fv and fo have disjoint supports. 
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Then for every e > 0, there is a subset ~1 o[ ~ of the same cardinality as ~,  and 

sets { B 0 } ~ ,  such that: 

(1) For each /3 ~ ~ ,  Bo is a closed subset of Ao and r(Bo) = ~(Ao). 

(2) For each /3 E ~ ,  a E Bo and function f ~ sp{X,: 3' E ~a, y#/3} ,  we have 

ITf(a)l<=ellfll. 

PROPOSITIO N 2. Let a be either a successor or a regular uncountable cardinal, 

and let T be a bounded linear operator on Co(to('*)). Then for every e > 0 there 

exist a closed subset A o[ [1, to ('~ homeomorphic to [1, tot'~ a closed subspace 

X of Co(w ('~)) and a number c, such that 

(a) X is determined over A and Ra (X) = Co(A). 

(b) X is (c, e)-preserved by T over A. 

The proof of Proposition 1 will be given in the fourth section, and the last 

three sections are devoted to the proof of Proposition 2. 

w Proof of Theorem I 

We start by noticing that if ~ is an uncountable regular cardinal and n > I then 

C(~" n)= C ( ~ ) q ) C ( ~ ( n -  1)) and by the classification theorem (see Introduc- 

tion) neither of those is isomorphic to C(~ �9 n). Thus C(~:" n) is not primary. 

By the classification theorem there are four cases remaining to be considered: 

3' = to( '"  where a =/3 + 1. 

y = to(") where a is an uncountable regular cardinal (in this case 

Case L 

Case II. 
3, = ~). 

Case III. y = ~ .A where ~ and ;t are infinite cardinals, ;t =< ~ and ~ is 

uncountable and regular. 

Case IV. y = to  ('~') where a is a limit ordinal which is not a regular 

uncountable cardinal. (This last case also includes the case when a is an 

uncountable cardinal which is not regular. For such a, to ( ' ' '  = a.) 

The first two cases are exactly those covered by Proposition 2, and we start by 

considering them simultaneously. Thus assume that Co(tO (' ')) = Z ~ Y with Pz, 

P~. the projections. By Proposition 2 there is a subspace X of Co(to('~"), a subset 

A of [1, to"~')], homeomorphic to [1, to ( ' ' ' ]  and a number c such that X is 

determined over A, RA (X) = Co(A) and X is (c, 1/10)-preserved by Pz over A. 

Since. Pz+P~.=I, X is ( 1 -  c, 1/10)-preserved by Py over A, and we can thus 

assume that c _= 1/2. But 1/2->_ 3-1/ I0  and thus by Lemma 1.2(b) and (c), Z 
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contains a complemented copy of Co(o~")). We now distinguish between the two 

cases. 

Case L By the classification theorem, we get that in this case Co(o~ ~'~) is 

isomorphic to its Co-sum, i.e. (E O Co(eO"'~))0 �9 Since Z is complemented in, and 

contains a complemented copy of Co(~Ot'~'~), it is in fact isomorphic to Co(tO "~*~) 

by Pelczynski's decomposition method [14]. 

Case II. We cannot apply here the decomposition method directly because 

C0(a) is not isomorphic to its co-sum (not even to its square). We thus study the 

projection from Co(a) onto PzXmore carefully. We shall use here Lemmas 1.1 

and 1.2 and keep the same notation. Without loss of generality we can assume 

that sup{r([a-,a]):  a E A} = a (where z(B), the type of the set B is the last /3 

such that B ~ # 0).  Indeed if this is not the case, we can find a subset A, of A, 

still homeomorphic to [1, a] for which the above condition holds. We then use 

Lemma 1.2(a) to replace X by a subspace X1 of X which is determined by A1 

and Ra,(X1)=Co(A~). By Lemma 1.1(d) Co(alA ) is isomorphic to 

(E~A @ Co(a-, a))o which is isometric to (E~A @ Co(a~))o, where the net {~  } is 

unbounded in a (by our condition). Using the decomposition method, it is easy 

to check that under this condition (E~A ~]~ Co(a~))o is isomorphic to its c0-sum. 

Thus by the decomposition method again, if Z~ is a complemented subspace of 

Co(a [ A ), then Co(a l A ) ~ Co(a [ A ) @ Z~. 
By the proof of Lemma 1.2(c), the kernel of the projection from Co(a) onto 

PzX is exactly Co(a I A ), and thus Z ~ Co(a)@ Z~ where Z~ is a complemented 

subspace of Co(alA). Using the above remark and the fact that Co(a)~- 
Co(A)@ Co(alA) (Lemma 1.1(c)) we get that 

Z ~- Co(a)@Z, = (Co(A)@ Co(a [ A) )@ Z~ 

Co(A )@(Co(a I A)~  ZO--- Co(A)@ Co(a I A)  ~ Co(a). 

The proofs of Cases III and IV are very similar, so that we prove only Case III 

in detail. We then indicate how to prove Case IV. 

Case III. For each ~ < A, let D~ = [ ~  + 1, ~(~ + 1)], and let D = {~8 : 8 = A}. 

By Lemma 1.1(c) and (d), Co(~:. A)= (E~<~ �9 Co(D~))oG Co(D). But Co(D) 
is isometric to Co(A) and each Co(D~) is isometric to Co(f). We claim that 

Co(~ .A) is isomorphic to (5;~<,0 Co(~:))o. Indeed, since A _--<~ write Co(~r ~ 

W G Co(A), and then 
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c0ff .  , ) - -  Coff))o~ Co(~) 

Assume now that C0(r A)= Z O Y, and let Pz, Pv be the projections. For 

each 6 < A let Rs: C(~ r h)--> C(D~) be the restriction operator, and identify 

C(De) with the space of all continuous functions on [1, r h ] that vanish off De. 

The operator Te = RnPvlc~v,)is thus a bounded linear operator on C(De). Since 

C(D~) is isometric to C(~ r and s r is an uncountable regular cardinal, we can 

apply Proposition 2, to find a closed subset Ae of De homeomorphic to [1, r a 

subspace X8 of C(Ds) and a number c8 such that 

(1) X8 is determined over Ae and Ra , (Xe)=  Co(As), 
(2) Xe is (c,, 1/40)-preserved by Te over A,. 

We can now find a subset ~ of {6:6  < h}, of the same cardinality as A, and a 

number c such that Ice - c I < 1/40 for all 6 E ~. Clearly then X8 is (c, 1/20)- 

preserved by Ts over As for alI 6 E ~3. We also note that if we define 

S~ = RsPz]c~o~), then S~ + Te is the identity on C(D~), and thus for each 6 ~ 2 ,  

Xe is (1 - c, 1/20)-preserved by Se over As. We can thus assume that c _-> 1/2. 

We now use the disjointness lemma (Proposition 1) for the operator Pv, 
{X,}e~, { A e } ~ ,  and e = 1/20, to find a subset ~ of ~ of the same cardinality, 

and subsets Be of A~ satisfying (1) and (2) of Proposition 1. By Lemma 1.2(a), we 

can find for each 6 E ~ a subspace Y~ of Xe which is determined over Be and 

R.. (Y~) = Co(he). 
Let W=sp{Ye: 6 E ~ } ,  E =  I.Ae~,Be. We shall show that Prlw is an 

isomorphism of W onto a complemented subspace of C(~ .  A) isomorphic to 

(EsE~, ~ Co(B~))o. By the remarks in the beginning of the proof this last space is 

isomorphic to C0(~ �9 h), and thus Y is isomorphic to C0(~ �9 A) by the decomposi- 

tion method. 

W is (c, 1/10)-preserved by Pv over E. Indeed, if f ~ W and b E Be for some 

6 E ~ ,  f has a unique representation as g + h where g E Y~, h E sp { Y~: y E ~ ,  

y ~  6}, and Ilgll, llh II---- Ilfl[. Then 

I Pd(b)- cf(b)I--< [Pyg(b)- cg(b)l +lPyh(b)- ch(b)l 
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The first estimate follows from g E Ys, b E Bs and the fact that Ys is (c, 1/20)- 

preserved by Py over Bs. The disjointness condition and h(b)= 0 give 

[ Pyh(b ) -  ch (b )l <--  llh II--- l l l f  II. 
Since c>->_1/2>=3.1/10, we get by Lemma 1.2(d) that indeed is an 

isomorphism onto a complemented subspace of Co(~:.A) isomorphic to 

( E ~  @ Co( Bs ) )o . 

Case IV. Since a is a limit ordinal, let )t be its cofinality and choose a net 

{a~: 8 < h.} such that a~ < as.l,  as are non-limit ordinals and as 1' a. Let 

Ds = [~o('~ 1, o/'*'+')]. 

Again by Lemma 1.1(c) and (d) and the decomposition method, C0(to (' ')) = 

(E~<,E) Co(Ds))o. Assume Co(to. t '~)  = Z ~ Y. By Proposition 2, we can find for 

each ~ <)t,  a subset As homeomorphic to Ds, subspace Xs of Co(D~), and 

number c8, such that Xs is determined over A~, RA~(X~)= Co(As), and X~ is 

(c~, 1/40)-preserved by RmP~,lcto,~ over As. Again by passing to a subset ~ of 

{~: ~ < ;t} of the same cardinality as )t, we can assume that there is a c such that 

each X~ is (c, 1/20)-preserved, and also that c => 1/2. We next use the disjointness 

lemma and finish in the same way as in Case III. 

w Proof of Theorem 2 

Let ~ be an uncountable regular cardinal and 1<= n < to. We shall briefly 

describe how the proof of the classification theorem (see Introduction) shows 

that the general linear group of C(~ �9 n) is not contractible. This follows along 

the same lines as the case ~: = to~ (the first uncountable ordinal) which was 

derived in [13] from the results in [16]. 

Fix an uncountable regular s ~, and let X~ C C(~:)** be the subspace of C(~)**, 

of all functionals ~ with the following property: If {/z~}~<~ is a bounded net in 

C(~)* which is to *-convergent to zero, and if a < g, then ~ ( ~ ) ~ 0 .  

It was shown in [7] that X~ is a closed subspace of C(~:)**, containing C(~:) as 

a subspace of co-dimension one. Now if T is any operator on C(~), T** takes X~ 

into itself, and extends T, and thus induces in a natural way an operator T on the 

one-dimensional space XdC(~). It is clear that if T is invertible, so is T. 

If n > 1, C ( ~ - n ) =  C ( ~ ) e " "  ~ C(~) (n-times), and if T is an invertible 

operator on C(~.  n), it naturally induces an invertible operator T on the 

n-dimensional space XJC(~)~) . . .  ~)X~/C(~)= F ~') (where F is the real or 

complex field). By the same argument as the one given in [13] for ~: = to~, it can 

be shown that GL(C(~ �9 n)) = G~ x GL(n, F)  where G~ = {T E GL(C(~  �9 n)): 
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is the identity on F (")} is contractible. Thus GL(C(~  �9 n)) has the same homotopy 

type as GL(n,  F). 

We now pass to the positive part of Theorem 2. For background the reader is 

referred to [12]. As a very special case of the results in [12] we quote the 

following sufficient criterion: 

Let X be a Banach space with the following two properties: 

(1) X is isomorphic to its Co-sum. 

(2) I f  T~, . . . ,  T, are bounded linear operators on X, and e > O, there are two 

norm one projections P], P2 on X such that P IX  and P2X are isomorphic to X, and 

such that II P, P2tl < ~ for all 1 <-_ j <- n. 

Then the general linear group of X is contractible. 

To apply this criterion to our situation, we first notice that by the classification 

theorem, unless C ( a )  is isomorphic to C(~ .  n) with ~ uncountable regular 

cardinal and n an integer, C (a )  is isomorphic to its Co-sum, which is just 

Co(a �9 to). Thus the first condition of the criterion holds. To show that the second 

condition holds, we represent C ( a )  as Co(a ' (o )  and put A,, = 

[am + 1, a (m + 1)]. Given an e > 0 and finite number of operators "/'1,.-., T, on 

Co(a �9 to), we use the disjointness lemma (Proposition 1) inductively n times, to 

find an infinite set M of natural numbers, and for each m E M a subset B,, of Am 

homeomorphic to [1, a] ,  such that for each moE M, b ~ B,.o and f which is 

supported in I,.J {A,~ : m E M, m ~ mo}, we have [ T~/(b) l  --< e Ilfll for j = 1 , . . . ,  n. 

For each m E M, let Sm:C(B,,)---~ C(Am)  be a norm one simultaneous 
extension operator. Write now M = MI t_J M2, a disjoint union of infinite sets, 
and define P~, P2 by 

p ~ f ( a , = ~ S m ( f l , , ) ( a )  if a ~ A m ,  m ~ M ~  

[o otherwise. 

Clearly P~, P2 are norm one projections in Co(a �9 to) whose ranges are isometric 

to Co(a" to), and by the choice of M, we get that I1P~TjP2II < e, j = 1 , . . . ,  n. 

w The disjointness lemma 

We start this section by proving the "disjointness lemma" (Proposition 1). We 

then give another variation which will be used in the proof of Proposition 2 in the 

sixth section. The proof that we give is similar to Kupka's proof [5] of 

Rosenthal 's disjointness lemma [15]. 

PROOF OF PROPOSITION 1. Since T is a bounded linear operator, the condition 

(2) is already satisfied for e = [I T[[ and ~1 = ~,  Be = As. It is thus enough to 
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show that if (X~, A~) satisfy (a), (b) and the condition (2) for some e > 0, we can 

find ~ t  and {Ba}a~, , that will satisfy (1) and the condition (2) for e/2. The 

general case follows by a finite number of iterations of this process. 

Re-index the family (Xo, A~) as (X(a.,), A(~.,))~,~, where ~ is an index set of 

the same cardinality as ~ .  For each /3,3, E ~ define Bt~ , )=  {a E A(~,): 

supl(Tf)(a)l<~ellf]l},  where the sup is taken over all f in sp{X(a.,,: 6 ~ ~, 

6 #  T}- B(~.,) is a closed subset of A(~.,) and there are two possibilities: 

(I) If there is a /3  such that ~-(B(~,))= ~-(A(a.,)) for all y E; ~, we are done by 

taking ~1 = {(/3, ~/): y ~ ~} and B(~,). 

(II) If no such /3 exists we can choose for each /3 E ~ a y ( /3 )E  ca with 

z(B(~,,,))))<~'(A(~.,(~)))). We now take ~8~={(/3, y( /3)): /3~ ~} and let B~ = 

{a~A,~,,(~)):suplTf(a)l<=�89 where the sup is taken over all f in 

sp(X(~,.,(~,)): /31 ~ ca, /31 # /3} .  
Then Ba is a closed subset of A (~,(~)) and clearly condition (2) is satisfied for 

e/2. It only remains to show that "r(Ba) = r(A(a.,(a))) for all/3 ~ ca. By the choice 

of Y(/3) if this were not the case then B a U B(~,,(a))~A(~,(a) ). (It is clear that if 

B, C are subsets of A with r (B) ,  ~-(C) < r ( A )  then also r (B  U C) < ~-(A) hence 

B t A C ~ A . )  Let a~A(o.,(o)) be a point not in B(~.,(o~tAB~, then by the 

definition of these sets there are functions 

f E  sp{X(~,): 3 '# y(/3)}, 

g E sp{X(~,.,(~,)):/3, # fl}, 

Ilfll = 1 

IIg 11 = 1 

such that T f ( a ) > e / 2 ,  T g ( a ) > e / 2 .  But by our choice of indices and the 

condition (b) of the lemma f and g have disjoint supports, and thus [If+ g [[ = 1. 

This contradicts the assumption that (2) is satisfied with e since 

T( f  + g)(a)  = Tf(a)  + Tg(a) > e = e [If + g [1. 

To prove our Proposition 2, we shall need in section 6 another version of the 

disjointness lemma, in which the index set is itself a set of ordinals. If A is a set 

of ordinals, it is itself a well ordered set, and thus order-equivalent to some 

ordinal. This ordinal is called the order type of A. (Note that it is usually 

different from the type of A, ~-(A)!) 

LEMMA 4.1. Let T be a bounded linear operator on C(a).  Assume that 

( X ~ ) ~  and { A ~ } ~  satisfy (a) and (b) of Proposition 1, where ~8 is a set of 

ordinals, whose order type is to ~ for some ordinal 7. Then for each e > O, there is a 

subset ~1 of ~,  of the same order type, and sets {Bo}o~,, satisfying (1) and (2) of 

Proposition 1. 
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PROOF. If to~ is a cardinal, this is exactly Proposition 1. (to" is a cardinal itI 7/ 

is an uncountable cardinal, or r / =  1.) If not, we shall use the same idea as in the 

proof of Proposition 1 and induction to show how to reduce e to 3e/4 in 

condition (2). Indeed, let ;t be the cofinality of to ~. We can find a non-decreasing 

net {t/~: 3' < A} with ~ < rl for all y, and an increasing net {/3~: 3' < A} C ~ ,  

cofinal in ~ ,  such that for each 3, < A the set ~ ~ = {/3 E ~ :/3~ </3 =</3~+~} has 

order type to"~. By the inductive hypothesis we can assume that for each 3,, 

( X ~ , A ~ ) ~ ,  satisfy conditions (1) and (2) of Proposition 1 for e/4. We now 

re-index the family { ~ :  3, < A} as {~(& 3,): & 3, < A}, and show that one of the 

following holds: 

Case L There is a g such that for each 3, < )t there is a subset ~ '  of ~ (g, 3,) 

of the same order type, and for each /3 E ~ '  we have r ( B ~ ) =  z(Aa) .  Here 

B~ = { a E A~ :supl Tf(a)l<= �89 Ilfll} where the sup is taken over all f ~ sp{X~ : 

E ~ ( &  3,'), 3 , '~ 3,, 3, '< A}. We then take ~ = U {~ ' :  3, < A}, and condition 

(2) will hold for these ~ and B~'s and for 3e/4. 

Case II. If the above does not hold, then for each 8 < A  there i sa  ~/(8)< A 

and a subset ~1 ~ of ~ (& 3,(8)) of the same order type, such that for each/3 E ~ ,  

~'(B~)= z(A~). Here Be = { a  ~ A ~  :sup] Tf(a)l<-_�89 where the sup is 

taken over all f E  sp{X~: 8 ' < A ,  8 ' ~  & a E ~ ( 8 ' ,  3,(~'))}. 

We now take ~ ,  = U {~1~: ~ < A} and condition (2) holds for these ~ and 

B~'s and for 3e/4. 

In 'either case ~ has order type to". 

The details are left to the reader. 

w Proof of Proposition 2 

In this section we shall first prove Proposition 2 for uncountable regular 

cardinals. We then formulate Proposition 3 and proceed to prove Proposition 2 

for successor ordinals. Proposition 3 is really the heart of the whole construction 

and its proof will be given in sections six and seven. 

The first lemma is very simple and well known. 

LEMMA 5.1. (a) Let ~7 be an ordinal with uncountable cofinality. Then every 

continuous function f on [1, r/) is eventually constant, i.e. there is a ~ < 77 such that 

f is constant on [~, r/). 

(b) Let {f~},<~ be a pointwise convergent net of continuous functions on [1, r/), 

where t I has uncountable cofinality and ;t is a regular uncountable cardinal, and 

let f = lim f,, then f is eventually constant. 
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PROOF. (a) If this were not the case, we would be able to find two increasing 

uncountable nets ap </3p < ap+l such that / ( /3p)  > / ( a p )  for all p. But then we 

would be able to find an e > 0 and two sequences a l  </31 < a2 < �9 ' �9 such that 

I [ ( / 3 , ) - / ( a , ) ]  _-e for all n, contradicting the continuity of f at a = l i m a ,  = 

lira/3,. 

(b) If this were not the case we would be able to find e > 0 and al  </31 < �9 �9 �9 

as above. S ince /v(a , ) - -~ , f (a , )  and [ . ( f l , ) - -} f ( f l , ) ,  and ~. is regular and uncount- 

able, there is a v0 such that f,o(a,) =/ (a . ) , / , 0 ( /3 . )  = / ( / 3 . )  for all n, contradicting 

the continuity of/ .o- 

PROOF OF PROPOSITION 2 FOR UNCOUNTABLE REGULAR a. Note  first that in this 

case to <'~ = a. For v < a, let Xv be the characteristic function of [0, v] and 

/~ = TX~. Since {Xv} is a weak Cauchy net in Co(a), {/~} converges pointwise to 

some function / on [0, a ] .  S i n c e / . ( a )  -- 0 for all v, we get by Lemma  5.1(a) that 

each/~ is eventually zero. By L e m m a  5.1(b) there is a/3o < a and a constant c 

such tha t / ( /3 )  = c for all/3o --</3 < a. We now choose for each p < a, ap < a and 

v(p)  < a such that ap < v(p)  < ap+l for all p and such that 

= I c < p 

L 0 T > p .  

Indeed, let a, =/3o. T h e n / ( a l )  = c and by the regularity of a there is a v(1) 

such tha t /~ (a l )  = c for all v _-> v(1). 

Inductively assume that ap, v(p)  were chosen for all p < po. Each f.(p) is 

eventually zero and po<  a, hence by the regularity of a, there is a a~o> 

sup{v(p):  p < po} such that/.(p)(apo) = 0 for all p < po. Using the regularity of a 

again, and the fact that f(apo) = c there is a V(po) > apo such that/,(apo) = c for all 

v -> 

Let now Ao={a~ :  p < a is a successor} and A = A o .  The set A is 

homeomorphic  to [1, a ]  and the space X = sp {X~): p < a} is determined over  

A with R A ( X ) =  Co(A). Moreover ,  if a E Ao and f = Y~' bjx~(~,), then f ( a ) =  Y~ bj 

where the sum is taken over  all j with v (p j )>a .  Similarly r f ( a ) =  

(E bjf~<~)(a)= c Y. bj, and the sum is taken over  the same j ' s  as above. Thus 

Tf (a)  = c / (a)  and X is (c, 0) preserved by r over A. 

In order to prove the second case of Proposition 2, we shall need the following 

proposition whose proof  will be given in the next two sections. 

PROPOSITION 3. For every ordinal 19, and numbers n, 8, p > O, there is an 

m = re(r/, n, p, 8) such that/or every bounded linear operator T o n  Co(to ~'~') with 

[ITll<=p, there is a closed subset A ,  of [1, t o "" ] ,  homeomorphic to [1, oJ""],  a 
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number c and a closed subspace X.  of Co(to "'m) which is determined over A., 

RA.(X.)  = Co(A.) and is (c, 8)-preserved by T over A.. 

PROOF OF PROPOSITION 2 FOR SUCCESSOR Ix. Assume that Ix = Ix1 + 1, and use 

Proposition 3 above for 71 = toG,, to find, for each n, numbers  m. corresponding 

to p = I[TI[, ~ = e/4 and n. 

Notice that tot-~ to~.-, and thus we can find disjoint clopen intervals E ,  in 

[1, to~~l homeomorphic  to [1, to"m] .  Let Z ,  = {f E Co(to ~ ' 0  : f(e) = 0 for all 

e g E,}. By Proposition 1 there is an infinite subset M of the integers, and for 

each n E M a subset D ,  of E ,  homeomorphic  to E. such that [Tf(d)[ <-_�89 [[f[[ 

for all no E M, d E D~o and f E sp {Z. : n E M, n # no}. Let S. : C(D.)--~ C(E.) 
be the simultaneous extension opera tor  from L e m m a  1.1(c), and consider S, as 

an opera tor  into Co(to "'~ by defining Sf to be zero outside E.. We now use 

Proposit ion 3 for the opera tor  T. = Ro.TS,: C(D.)--~ C(D.)  to get a set A .  C D ,  

homeomorphic  to [1, to~"], a number  c. and X.  as in that proposition. We can 

now find an infinite subset M1 of M and a number  c such that I c, - c [ < e/4 for 

all n ~ M1, and thus X,  is (c, e/2) preserved by 7", over A.. For  each n E M1 

choose a subset A "  C A,, homeomorphic  to [1, to"t"-~)] with sup A " <  sup A. .  By 

L e m m a  1.2(a) there is a subspace Y. of X,, determined over  A "  with RA'.(Y.) = 

C(A') ,  The set A = U {A' :  n ~ M~}, the space X = sp{Y.: n E M~} and this c 

satisfy Proposition 2. 

REMARKS. (1) Notice that we used Proposition 3 for r/ of the form ~/=  to~ 

only. The proof  also reduces easily to this case. Indeed, given r/, choose Ix and k 

such that to G _-< r/_-< to e �9 k. If Proposition 3 holds for to ~ and n is given, choose 

m = m(to G, nk, p, ~). Since [1, to"~]  contains an initial segment homeomorphic  

to [1, to ( . . . .  )], and [1, to ~~ contains an initial segment homeomorphic  to 

[1, to~"], Proposition 3 follows for r/ and n with this m. 

(2) As we saw, Proposition 3 for r/ = to G implies that Proposition 2 holds for 

a + 1. If Ix is a successor or an uncountable regular cardinal, we will assume in 

the proof  of Proposition 3 for to ~ that Proposition 2 holds for this a. This gives 

an inductive process that proves both Proposition 2 and 3, except that if Ix is a 

limit ordinal (which is not an uncountable regular cardinal) we shall need a 

somewhat  more complicated procedure to prove Proposition 3 for tog from the 

inductive hypothesis that Proposition 2 holds for every successor ordinal/3 < Ix. 

w Proof of Proposition 3 

The proof  of Proposition 3 involves two ingredients. The first is a canonical 

decomposit ion,  for any ordinal % of C0(3,") into subspaces isometric to C0(y), 
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and the study of an operator T on Co(,/") in terms of its behaviour on these 

smaller spaces. This will be done  in the first part of this section. 

The second ingredient is the application of Proposition 2. Here we shall use 

the above decomposition for 3' = to t'~~ and use it to study the operator T by 

knowing (assuming Proposition 2 for a )  that T behaves "nicely" on the smaller 

spaces isometric to Co(tOo'a)). 

To this end we shall need, however, a stronger form of Proposition 2 (Lemma 

6.3). The last section will be devoted to the technical part of showing that 

Proposition 2 indeed implies this stronger form. 

Before we give the description of Co(,/"), which requires a somewhat messy 

notation, we start with the case n = 2. Each a < ,/z has a unique representation 

as a = ,/al + a2 with 0 =< al < % and we denote this a by a = (al, a2). For each 

b~ < , / l e t  A~ = {a: 3, ' b~ < a =< '/(b~ + 1)}. Each Ab, is a closed interval in [1, '/2] 

homeomorphic to [1, 3']. Also set A = [1, '/2]. Let X = {f E Co(3'2): f is constant 

on each Ab,}, and for each bl let X~ = {f E C0(,/2): f is supported in A~ and 

f lab, E C0(A~)}. The space X and each of the spaces Xb, are isometric to Co(,/), 
and C0(y2) = s-p{X, I.-Jb,<~Xb,}. Moreover, given a point a = (a~,a2)< '/2, every 

f E Co(',/2) has a unique representation f = g  + h where g E sp{X, X,,} and 

h Esp{X~:  bx~al}. In this representation IIgll, llhll<=211fll. This is a very 

convenient decomposition since h~(d)=O for every d E A , ,  a~id 

h~ E sp{X~: b ~  a~}. 

We now pass to the description of Co(,/") for general n. Each a < 3," has a 

unique representation a = 3'"-~al + �9 �9 �9 + 3'a,-a + a,, where 0 =< aj < % and we 

shall denote this a by a=(a~,. . . ,a,) .  For each O<=rn<n and fixed 0_--- 

b~, . . . ,  bm < '/, let 

A(b~.....b,) = {a: (ba, . . . ,  b,,, O,... . ,0) < a 

=(b~, . . . ,bm + 1,0, . . - ,0)} 

(if m = 0 we put A = [1, 3'"]). Each A~b,.....~.) is a closed interval homeomorphic 

to [1, ' / " -"] .  

Let X = {f E Co('/"): f is constant on each A~}, and similarly, for each fixed 

(b l , ' '  ', b,,) let X~b,....,~.) be the space of all functions f ~ Co(,/") such that 

(1) f is supported in A(b,....,b.) and vanishes at its end point 

(b~, �9 �9 b,, + 1, 0,-" ", 0). 

(2) For each 0-< b,,+~ < y, f is constant on A<b, ... b.+,) 

Again the space X and each of the spaces X<bl.--..b.) are isometric to Co(,/), and 
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(70(3, N) = sp{Xtb,.....b,): 0 =  < m < n, 0 =  < bj < 3'}- Moreover,  given a point a = 

( a l , ' " , a n ) < 3 ' n ,  every f E  (7o(3, n) has a unique representatiort f =  

go + gl + " " + g.- l  + h where go E X,  gj E Xt,,,,....,,,) for l <- j <= n - 1 ,  and 

h ~ sp {Xtb,....,b,~: 1 =< m < n -- 1, (bl, �9 �9 bin) # (al, �9 �9 ", am)}. In this representa- 

tion II II, II h l[ --< 2 II f II for every 0 =< k =< n - 1. (Indeed I[ go + " "  + gk It -<- Ill II 
because every value of this function is also a value of f ;  go + �9 �9 �9 + gk is constant 

on each Atb,,....b,+,) and if j is the last index such that bj = aj its value there is 

f ( a l , . . . ,  a,, hi+, + 1, 0 , . . . ) . )  
This decomposition is very important. It allows us to compute the values of a 

function at a point by computing the values of the components,  and this is done 

with good norm estimates on the components  (see e.g. the proof of Lemma 

6.2(b)). 

REMARK. In the description of Co(3' n) above, instead of taking a~ll the spaces 

X~b,,....b=), we could take a set of indices ~ with the following property: 

(*) . . .  The zero tuple is in ~,  and for each m < n -  1 and (b~, . . . ,  b~ )E  ~,  

(b~,. �9 b,,+0 E ~ for a set of b,,+~'s whose order  type is 3'. (Recall that the order 

type of a set of ordinals H is the ordinal to which H is order-equivalent.) 

In this case there is a subset D of [1, 3'~], homeomorphic  to [1, 3'n], and a 

subspace Y of sp{X~b,.....b~): (b , , - . . ,  bm)~ ~}  such that RD: Y - ~ C o ( D )  is an 

isometry onto. Indeed, let Do = 1,3 {A~b,,..b._,): ( b l , ' '  ", b,_~) E ~}  and D =/5o. 

For each (b~, . . . ,  b , , )E  ~ by an argument similar to Lemma 1.2(a) (see also 

Lemma 6.2(a)), applied to X~b,,..-b~), there is a subspace Y~b,...,b=) of X<b,, ..b=) 

such that Ro is an isometry of Ycb,,. ,b~) onto RDX~b,....,b~), and we take 

Y = sp{Y~b,....b~): (b~, ' '  ", bm)E ~} .  

The building blocks in the above description of Co(3' ") are the spaces X~b,....,b~) 

which are isometric to Co(3') and consist of functions which are constant on 

" large" sets. Supported in these large sets we then construct more copies of 

Co(3'), namely, the spaces X~b,,...b,,b.§ etc. This is the kind of procedure that we 

shall follow in constructing Co(~O ~ " )  in the proof of Proposition 3. To this end we 

shall need conditions on the operator  T to preserve this kind of behaviour. 

Recall that by Remark (1) at the end of section five, we are interested only in 

ordinals of the type y = to ~'"). The following definition and lemmas, however, 

make sense (and save messy indexing) for ordinals 3' of the form 3' = o~" for 

any ~-. 

We first introduce some notation. Let  A C B  be closed subsets of [1, 71] for 

some r/. We say that the pair (A,  B )  is o f  type (a, f l )  if B is homeomorphic  to 

[1, to a+~] and A = B ta) (in particular, A is homeomorphic  to [1, ~o']). 
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For each a E A, a ~  supA,  let a § = inf{c C A:  c > a}. We say that a sub- 

space X of Co(rl) is determined over (A, B )  if it is determined over B, and each 

function f ~ X is constant on each interval B n [a + 1, a+], a ~ A. (Note that in 

this case X is already determined over A.) 

If T is a bounded linear operator  on Co(*/), we say that X is (c, e)-preserved by 

Tover (A, B),  if it is (c, e)-preserved by T over B. (This terminology will be used 

only when X is determined over (A, B)  as well.) 

If (A, B)  and (C, D)  are two pairs we say that (C, D )  is contained in (A, B),  

denoted by (C, D)  < (A, B), if there is an a E A such that D C [a + 1, a *] n B. 

The first lemma will summarize the description of Co(to *~) that we gave in the 

beginning of this section in terms of subspaces isometric to C0(to a) and 

determined over appropriate pairs. The second lemma gives conditions on the 

behaviour of the operator  T on each of these smaller spaces so that the copy of 

C(to ~") will be (c, e )-preserved by T over some set D homeomorphic  to 

[1, to~'"]. 

In the following two lemmas r I will be a fixed ordinal with to a., __< rl, and all 

sets will be closed subsets of [1, r/]. 

LEMMA 6.1. Let ~ be a set of indices satisfying (*)  for y = toa and some t~. 

For each/7 = ( b l , "  ", b,, ) E ~,  let (Aa, Ba) be a pair and Xa a subspace of Co(~l) 

such that 

1. If~7 = (b~, ' '  ", b,, ) (i.e. has length m), then (Aa, Ba) has type (oe, ot(n - m - 

1)). 

2. If/7 = ( b~, . " ., b= + , ) E ~ and if/7o = ( b , , . ' . ,  b= ), then (A~, Bg) < (A&, B~,). 

Also B~ n B~, = 0 if b '=  (b~ . . . . .  b'+~)~ /7. 

3. X~ is determined over (A~, B~) and Ra~(XG)= Co(A~). 

4. Every function f ~ X~ is supported in [~, ~2] where ~1 = inf{~: {: E B~}, 

~2 = sup {st: s r @ B~}. (Notice that if f E X~b,.....b,.,), g E X~b,.....b=), then g is constant 

on the support of f.) 

Let Do = U{A~b, . . . . .~ ._ , ) : (bl , . . . ,b , -OE~},  and D = / 5 o .  Then D is 

homeomorphic to [1, (to~)'], and if we put Z = sp{X~: b ~ ~},  there is a subspace 

Y of Z such that Y is determined over D and Ro ( Y )  = Co(D) (in particular Y is 

isometric to C0(to~")). 

PROOF. The conditions are the same as those given in the description of 

Co(y") above for y = to~, and in the Remark thereafter.  

The next lemma is the analogue of Lemma 1.2 for pairs: 

LEMMA 6.2. (a) Let X be determined over a pair (A, B )  of type (a, fl ), and D 

a closed subset o f A  homeomorphic to [1, to =~] for some a, <= a. I f  Ra ( X )  = Co(A ), 
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there is a set E, D C E C B and a subspace Y of X such that (D, E )  is a pair of type 

(al, [3)i Y is determined over (D, E )  and R o ( Y )  = Co(D). 

(b) Let ~ ,  (A~, Ba), X6, D and Y be as in Lemma 6.1, and let The  a bounded 

linear operator on Co(71), e > 0  and c a number such that: 

(1) Each X~ is (c, e/4n)-preserved by T over (As, B~). 

(2) For each (al , '"  ", a,-~) ~ ~,  d ~ A~a,..... .... ) and h E sp U~,~{X~b,....,b.: 

( b , , ' '  ", b,,,) E ~ ,  (b l , "" . ,  br,)# (a, ,"" ", a,,)), [Th(d)[ <- Je IIh If. 
Then Y is (c, e)-preserved by T over D. In particular, if c > 3e > O, T is an 

isomorphism of Y onto TY,  and T Y  is complemented in Co(71). 

PROOF. Part (a) is proved as Lemma 1.2(a). Notice that the extension 

operator constructed in Lemma 1.1(c) extends the functions to be constant on 

the intervals between consecutive points of D, hence every choice of E C B such 

that E (~) = D will do. 

To prove (b), let d E Do be arbitrary and let f E Y. Since the sets Atb,.....b._,~ 

are disjoint, there is a unique ( a l , ' - ' ,  a , -0  E ~ such that d E A ta,,..., .... ). Let 

f = g  + h be the unique representation with g E sp{X, X~,,),..., Xta,,.... .... )}, 

h E sp{X~b,.....b.): 1 =< m =< n -- 1 and (bi,-- -, b~) # (a~,- . . ,  a,)}. Also decom- 

pose g = go+ g~ + �9 �9 �9 + g,-~ where go ~ X ,  �9 �9 ",  gn-1 ~ X ( a , . . , ,  . . . .  ). Then 

Ilhll, llgoll,. . . ,  II g,_, [[ _-__ 211fit, and thus 
r l - 1  

I T f (d ) -  cf(d)l <--- I Tg,(d)-  cg,(d)l + l T h ( d ) -  ch(d)l <-_ e Ilfll, 
i=O 

since by (1)ITg,(d)-cg, (d) l<-- (~/an) l lg ,  for a l l /  and by (2) 

I Th(d)l =<lze II h II --< �89 Ilfll, while h ( d ) =  0 by the definition of h. 

The last assertion follows from Lemma 1.2(b) and (c). 

We are now ready to formulate the strengthened form of Proposition 2 that we 

shall need. 

LEMMA 6.3. Let a be an ordinal such that the conclusion of Proposition 2 holds 

for a. Let 7, [3 be ordinals with 3/>= to#+" and T a bounded linear operator on 

Co('y). Let ~<~2<='r and CC[~+1,~:2]  be a closed set homeomorphic to 

[1, co~+':]. Then for every e > 0 ,  there is a closed subspace Y of Co(~/), a pair 

(A, B )  of type (to ~, [3) with B C C, and a number c, such that 

(1) the functions in Y are supported in [~ + 1, ~2], 

(2) Y is determined over ( A , B )  and RA(Y) = Co(A), 

(3) Y is (c, e)-preserved by T over (A, B).  

Notice that Lemma 6.3 differs from Proposition 2 in two ways. The first is that 

we deal with an operator on Co(y) instead of Co(tot"~ and we find our 
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"preserved"  space and the set on which it is preserved inside given space and set. 

This difference is just formal and very easy to overcome. The main difference is 

that the space is not only (c, e)-preserved over a set homeomorphic  to [1, tot'*~], 

but over a pair (A, B) of type (to~,/3), and/3 is arbitrary. This means that both 

the space we construct and its image consist of functions that are constant on 

" large" sets, allowing us to iterate applications of this lemma and construct 

further spaces of functions supported in these sets, thus giving a structure like in 

Lemmas 6.1 and 6.2. 

PROOF OF PROPOSITION 3 (for 7/ = to ~, ,x satisfying Proposition 2). Let ~- < 8/12 n 

and let m > 2p(n + 1)/r. The proof will consist of three steps. In step I, which is 

the main step, we shall construct spaces X~, and pairs (Aa, B~) as in Lemma 6.1, 

with m "levels," i.e. Y will be isometric to Co(to"m). Also for each fi there will 

be a (possibly different) constant c(ti)  such that X~ will be (c(d),  r)-preserved by 

T over (A~, Ba). The disjointness condition ((2) in Lemma 6.2(b)) will be also 

satisfied. 

In step II we shall pass to a smaller set of indices ~ still satisfying the condition 

(*)  and find numbers co,..-,c,,_~ such that if t i E c r  has length /, (i.e. 

ti - - ( a t , "  ", a~)) then Xa will be (G 2~-)-preserved by T over (A~, B~). 

In step III we shall use the fact that we have m numbers Co,...,c,,_~ in 

[ - p, t9], and find n of them which are essentially the same number  c. It is then a 

simple matter  to find a subset ~ of C which will be of order  type to n." for which 

all the conditions of Lemma 6.2(b) will be satisfied. 

= n.m (m - 1)= Step L We shall first use Lemma 6.3 with 3' to , /3 = r /  

t o ~ ( r n - 1 ) ,  C = [ 1 ,  to " " ]  and r for e. We thus find a pair (A,B) of type 

(~/, r/(rn - 1)), a number Co and a subspace X of Co(to~ m), which is determined 

over (A, B),  RA (X) = Co(A), and is (co, r)-preserved by T over (A, B). For each 

a, EA,  let a~=inf{aEA: a>a~} and let Zo,={fECo(to'"): / ( e ) = 0  for 

e ~ [a~ + 1, a~)}. We would like now to use Lemma 6.3 for C = B (q [a~ + 1, a~], 

however we first want to make sure that the disjointness condition ((2) in Lemma 

6.2(b)) will be satisfied. Hence we use Lemma 4.1 to find a subset sr of A, of the 

same order  type to~, and for each a~E ~t a subset Co~ of B tq[a~+ 1, a~] 

homeomorphic  to t o~" - "  such that I Tf(d)l <=  -Ilfll for all b, @ M, d E Cb, and 

f E sp {Z,,: a~ E sO, al fi b~}. For each a~ E M we now use Lemma 6.3 again with 

/3 = r/ (m - 2), C=C~,, ~=a~, ~2=a? to find a pair (A~,,B,,) of type 

(r/, ~7 (m - 2)) with B~,CCo,, and a s0bspace Xo, supported in [ a ~ + l , a ~ ] ,  

determined over (A,,,B,,), with RA.,(X,,) = Co(A~,), and which is (c(a~),r)- 
preserved by T over (A~,, Ba,). 
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Inductively, given ~i = (a~, �9 �9 ai) and a pair (Aa, B~) of type (r/, r/(m - j - 1)), 

we define for each a~+~UA~, ai+~=inf{a~Aa: a>a~+~} and Z~+,= 

{ f ~  C(to" ") :  f ( e ) =  0 for e ~ [a1+~ + 1, a~++0}. We now use Lemma 4.1 to find 

~t~ CAa of the same order  type, to n, and for each a~+~ ~ M, a closed subset C~,§ 

of [a~+~+ 1, a t e ]  fh Ba homeomorphic  to to,tm-~-, such that ITf(d)] <= ~'llfl[ for 

all b~+~ ~a, d E  C~+, and f ~  sp{Z~.,: a~+~ta,  a~+l~ bi+~}. 

We now use Lemma 6.3 again for each a~+l~ M~ with C =  Ca,.+,, /3 = 

r/(m - j - 2), sr = a~+~, scz = a~++~ and ~" to find a pair (A ~,... ~,§ B ~ .. ~+,), a space 

X~,..,~+, and a number c(ax,...,a~+~). Proceeding this way for j =  

1, 2, .  �9 m - 1, we get the required pairs of sets, (Aa, B~), and spaces X~ as in 

Lemma 6.1. 

Step II. Co is already given. To find c~, notice that there is a subset ~ of ~t, 

of the same order  type, and c~ such that t c~(b,)- c~ I < ~" for all b~ ~ ~ .  This is 

the cl we are looking for. 

Next for each b~ E ~ we can find a constant C(bl) and a subset ~ C gt~, of the 

same order  type with [c(b~,a~)-c(b~)l < ~'/2 for all a z ~  ~ , ,  and then find a 

subset qg, of ~1 of the same order  type as ~1 and a c~, such that ]c(bO- c~[ < z/2 
for all b~ ~ ~ .  Iterating this process m-times we find Co," ", c,,-1 and qg as 

required. Thus for each /~ = (b~,-. . ,  b~)@ qg, X~ is (c~, 2~')-preserved by T over 

(As, B$). 

Step IlL Since we have m numbers C0,'' ',Cm_I all in the interval 

[ - I [  TII, [[ TIll = [ -  p, pl, and since m > 2p(n + 1)/z, we can find n of these 

numbers ci, , '"  ", el, and a number c such that t c ~ k - e l <  ~, k = 1 , . - . ,  n. By 

picking only from the n levels il,. �9 i,, we can pass to a subset ~ of cr which 

satisfies ( * ) - - t h i s  time for n and not for m. 

Indeed, fix any (bl, �9 �9 ", bl,) E cr and let X = Xtb,.....b,,). For each b,,§ such that 

(ba,-- -, bii, bh+l) ~ c~ choose d l =  (bl , ' "  ", b~,, b,,+~,..., b~2) E ~ and let Xd, = 

Xtb, c .b,2~, Ad, = Atb,....b,2), Bd, = Btb,..b,2). Next, for each fixed d~ = ( b l , "  ", b~) 

and each bi~+~ with (b~, �9 -., b~, bi2+l ) E ~,  find (d~, d2) = 

(b~,"  ", bi~, b~+~,-" ", b~)E c~. Let X(,~,,,~)= X(~q...~,~) and define A~d,,,~), B(~,,a~ 
similarly. 

We repeat this process for the n levels i~,. �9 i,. The set ~ = {d = (dl,�9 �9 dk): 

0 =  < k < n} satisfies ( * )  (because ~ did, and by the choice of the d's). 

The  pairs (Aa, Ba) and the spaces Xa for d E ~ and this c are those which 

satisfy the conditions of Lemma 6.2(b). Indeed for each d E 9~, Xa is (c, 3z)- 

preserved by T over (Aa, Ba) and 3~" < 36/12n = 6/4n. Also the "disjointness 
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condition" (2) is satisfied, since in each level we have r-disjointness and we have 

n levels and m" < 8/12 < 8/4. 

PROOF OF PROPOSmON 3 (for 7/ = to", a a limit ordinal which is not an 

uncountable regular cardinal). This case is similar to the previous one, and we 

indicate briefly the necessary modifications. Let h be the cofinality of a and {/3e : 

s r < h } a net increasing to a, such that each /3~ is a successor. Since a is not a 

regular cardinal, we can assume that /3 e => h for all ~ => 1. To simplify notation, 

let r/~ = to~. 

This time we also have to prove Proposition 3 for n = 1 (which was, with 

m = 1, exactly what Proposition 2 ensured in the previous case). This is what we 

now indicate. 

Consider first an operator  T on Co(tO"). By using Proposition 2 for each/3o we 

can find sets Ae C[1, to"], homeomorphic  to [1, to"f] and contained in disjoint 

intervals, subspaces Xe and numbers ce, such that X~ is determined and 

(ce, z)-preserved by T over A~, and RA,(X~) = Co(A~). By passing to a subset of 

the ~'s, of the same cardinality, we can assume that there is a c such that 

Ice - c ] < r, and also (using Proposition 1) that the Xe's satisfy the "disjointness 

condition" for r. Thus X = sp{Xe} is determined and (c,3z)-preserved over 

A = I,.) Ae and RA(X) = (E e (~) Co(A,))o. 
To get a space whose restriction to A is Co(A), we should have in X also 

functions {/p: p < h } such that 

j- 1 ~:____p 
fp (Ae) = 

t 0 ~ > p .  

And these fp's should also be (c, r over A. 

To this end we go from 0o" to to "2. Write [1, to "2] as a disjoint union of clopen 

intervals {Ce: ~: < )t}, homeomorphic  to co". oJ"* respectively. On each Ce we 

use Lemma 6.3 with/3 = r / and  a =/3~. We thus find pairs (Ae, Be) of type (r/e, r/), 

spaces X e and numbers ce, such that Xe is determined over (Ae, Be) with 

RA,(X~) = Co(Ae), and X e is (ce, z)-preserved by T over (A~, Be). By passing to a 

smaller set of sC's of the same cardinality, and using the disjointness lemma 

(Proposition 1), we can also assume that c~ = Co is independent of s ~ and that the 

X~'s satisfy the disjointness condition. Thus if we let A = 1.3 A o B = I,.J Be, then 

(A, B)  is a pair of type (r/, r/) and X = sp(X e) is determined and (co, r)-preserved 

by T over (A, B)  with RA(X)= (E~ ~ Co(Ae))o. 
As in the previous case, we now define for each a E A, a += in f{e  E A : 

e > a }, and repeat the construction on each of the sets [a + 1, a +] N B, to find for 
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each ~: < h  a subset A(a,~) homeomorphic  to [1, to ",] and a space X(a,~) 
determined and (c(a, ~), r)-preserved over A (a, ~) by T with RAt~o(Xta,~) = 
Co(A (a, ~)). By passing to a subset of the a ' s  of the same cardinality, and for 

each of these a ' s  to subsets of the ~'s of the same cardinality, we can assume that 

c(a, ~) = cl is independent  of a and ~, and that the spaces X(a, ~) satisfy the 

disjointness condition. 

This is the point where the construction is essentially different from the 

previous case. We are not going to use all the first "level," we shall use it only to 

find the functions fp. Similarly we shall not use all of the second level, but pick 

only a suitable collection of the spaces X(a, ~). 
Pick any space X~ from the first "level ,"  say X1. Since /31 => h there is an 

increasing net {a(p): p < A} in A1, and let f~ E X~ be the unique function in X~ 

such that f,(a) = 1 if a E A, a =< ap and f~(a) = 0 if a E A, a > a(p). For each 

p < A pick now the pth set A(a(p),p) in the a(p) th  block and the pth space 

X(a (p), p) from the second level. Again D = U oA (a (p), p) is homeomorphic  to 

to" and X=sp{X(a(p),p)} is determined over D with R o ( X )  = 

(E, •Co(A(a(p),p)))o. But this time the functions fp that we have chosen 

behave exactly as they should: 

j" 1 
f.(A(a(p),p))= [ 0 z<p. 

Thus Y = sp[{f,: p < A} U X] is determined over D and Ro(Y)= Co(D). The 

trouble is that the f , ' s  are (Co, z)-preserved by T over D, and X is (c~, ~-)- 

preserved by T over D, and Co might be different from c~. 

But now we argue as in the proof of the previous case that if 

T: Co(tO~")----~Co(tO~"), [ITll=<p and m is large enough, we can find m 

"levels" and m numbers Co," �9 ", c,,_~ as above (instead of just m = 2), and then 

there are il, i2 such that ]c~,- c~21 < ~'. We then do the above construction using 

the i~, i2 levels instead of the first and second. 

This proves the proposition for n = 1. The general case is similar. 

w Proof of Lemma 6.3 

As we mentioned after the formulation of Lemma 6.3, its main difference from 

Proposition 2 is that it ensured the existence of a space which is preserved by T 

over a pair and not only over a set. 

This, the passage from a set to a pair, is the content of the first and main 

lemma in this section. 
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After formulating Lemma 7.1 we easily deduce Lemma 6.3 from it. We then 

prove two technical lemmas on pointwise converging nets of continuous 

functions, and finish the section with a proof of Lemma 7.1. 

LEMMA 7.1. Let 71,/3, 7 be ordinals such that 7 >- to~§ T a bounded linear 

operator on Co(7). Let X be a closed subspace of C0(3'), E C D  C[1, 3'] closed 

subsets of [1, 3"], c and e > 0 be given such that 

(1) (E, D) is a pair of type ('q,/3). 

(2) X is determined over (E, D) and RE(X)= Co(E). 

(3) X is (c, e)-preserved by T over E. 

Then for every el > e there is a pair (A, B)  and a subspace Y of X such that 

(a) (A ,B)  is a pairoftype ('q, fl) with B CD, A C E .  

(b) Y is determined over (A, B)  and R A ( Y ) =  Co(A). 

(c) Y is (c, e~)-preserved by T over (A, B). 

Lemma 6.3 follows from Lemma 7.1. Indeed, the set F = C (~ is homeomor- 

phic to [1, o~t'")]. By Lemma 1.1(c) there is a simultaneous extension operator 

S: C ( F ) ~  C ( ~ +  1,~:2), and we can consider S as an operator from C(F) to 

C(y )  by putting Sf(a)=O if a ~ [sr 1,~:2]. We now consider the operator 

T, = RFTS: C(F)--~ C(F). Since Proposition 2 holds for a and since F is 

homeomorphic to [1, to~'~')], we can find a subset E of F, homeomorphic to 

[1, to~")], a number c, and a subspace Z of C(F),  which is determined over E, 

Re (Z) = Co(E), and which is (c, e/2)-preserved by T~ over E. Since E C F C C t~), 

we can find a D C C such that (E, D)  is a pair of type (to",/3). We now use 

Lemma 7.1 for the operator T, the space X = SZ, 7/ = to ", e~ = e and this pair 

(E ,D)  to find ( A , B )  and Y as required. 

The next lemma shows that an uncountable net of continuous functions 

converging to a continuous function must eventually be equal to the limit on a 

large set. 

LEMMA 7.2. Let h be an uncountable regular cardinal, ~ any ordinal. Let 

{f~}~<~ be a net of continuous functions on [1, to~], converging pointwise to zero. 

Then there is a closed subset H of [1, to'], homeomorphic to [1, to ~ ] and a family 

C{f~}~<x of the same cardinality as h such that f(a) = 0 for all f ~ ~ and 

a ~ H .  

PROOF. Notice that since h is regular and uncountable, the condition 

fv(a)--~0 means that there is a v(a) such that f~(a)= 0 for all v >- v(a). The 

proof will be by induction on I". In fact we shall use (and prove) a stronger 
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inductive hypothesis, namely, that for each ~-, there is an inductive procedure to 

choose H and ~, which we now describe: 

For each p < A, there is a closed set Ho C [1, w'] ,  and an ordinal u(p) such that 

(1) Hp fl Hp, = O, u(p) < u(pl) for all P < P~. 

(2) f i ( a ) = 0  for all a ~ H ,  and u ~ [ u ( p ) + l , v ( p + l ) ) ,  v>= u(1). 

(3) H = H1U U {H,~o): p < it} is homeomorphic  to [1, oJ'], for each increas- 

ing net {~-(p): p < it}. 

It is clear that this H and ~ = {f,<~): p < it } satisfy the requirements. 

Observe that the lemma and the above procedure are trivial if ~o ~ < it. We just 

take H = H, = [1, oJ'], (Ho = ~3 if p > 1), and find Vo< it such that f ,(a) = 0 for 

all v-> v0, a_-< oJ" (such vo exists by the regularity of A). We then take 

v(p )= vo + p. 

Let 6 be the cofinality of oJ ~. If 6 > it the procedure is again trivial. By Lemma 

5.1(a) each f, is eventually constant, and since f~(w')----> 0 there is a v0 < it such 

that f,(~o') = 0 for all v = v0, and thus this constant is zero. Since 6 > A we can 

find a point ~ < o /  such that, in fact, f ,(a) = 0 for all u >- Vo and all a >-_ ~. We 

now take H~= [~,w']  (H o = Q  if p > l )  and u ( p ) =  uo+p. 

It is these two cases (w" < it and 6 > it ) that account for the special role of H1 

in the procedure that we described. 

We have two cases left to consider: 6 < it and 6 = it. In these cases we shall 

use the inductive hypothesis. Thus let {y~: ~ < 8} be a net increasing to oJ'. We 

can (and will) assume that for each ~ <  6, the interval [7, + 1,'y~+~] is 

homeomorphic to [1, w ~*] for some ~-~ < z, where {r~: ~: < 8} is a non-decreasing 

net. By the inductive hypothesis we can find for each ~r < 6 and p < it, sets 

H~oC[y~ + 1, Y~+~] and ordinals v(~:,p)< it such that 

(1) For all ~ and all p < p , ,  H ~ r I H ~ , = O  and v ( ~ , p ) <  v(~,p,). 

(2) f . ( a )  = 0 for a E H~ and v ~ [v(~, P) + 1, v(~, P + 1)), v -> v(~. 1). 

(3) Hf  U U {H~(o>: p < A} is homeomorphic  to [1, o'~] for each increasing net 

H(p):  p < it}. 
We shall now combine the selections on each of the intervals [y~ + 1, 7~+~] to 

one selection for [1, w'] .  This is done by a standard "gliding hump" procedure. 

The details are a little different in the two cases. 

6 < i t .  We shall find an increasing net {~(p): p < i t }  such that Ho = 

U {H~: ~ < 6}. will satisfy the requirements for a suitable choice of v(p). 

We let ~(1) = 1. By the regularity of A, we can find v (1 )>  sup{u(~,2): ~ < 6} 

with u(1)<A.  Then clearly / , ( a ) = 0  for all ~,_->(1) and a ~ H ~ =  
U {Hf :~ < ~}. 

Inductively assume that {1+(0): P -< po} and {~(p): p < po} have already been 
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chosen. By (2), for each ~< ,5  there is an rl(~ r) such that f v ( a ) = 0  for all 

v(1)= < v <= v(p,,) and a E H i, if /~ -> "O(~). Since ,5 < A we can find /z(po)< A 

such that /~ (p0) > sup{n (~): ~: < 5̀} + sup{~ (p): p < #4. 
We now use (2) and the regularity of A again to find V(po+ 1) such that if 

v => V(po+ 1) then f~(a) = 0  for all a E H~po)for all ~:. 

If p, is a limit ordinal we just take v(pl) = sup{v(p): p < pl}. 

These v(p) and Hp = U {H~o): ~ < 5̀} satisfy the required conditions. Indeed 

(1) and (2) are obvious, and if {r(p): p < A} is arbitrary then HI U U H.~,~ = 

U ~ [ H ~ U ( U  H~o~)], and this is the closure of a union of disjoint sets 

homeomorphic to [1, o~] .  By the choice of z~ such a set is homeomorphic to 

[1, ~o~]. 

,5 = A. We first note that by the same argument as in the case ,5 > A (namely, 

by using Lemma 5.1), there is a Vo < )t such that for each v >= Vo there is a 

= ~:(v) such that f~ (a)= 0 for all a => 3'~. To simplify notation assume that 

/"0 ~ 1. 

We now define two increasing nets {/z (p): p < A} and {r p < A} such that 
H~ = H~ (~) U U I u~o,). < t ' "  .~)- "r/= p} will satisfy the requirements for suitable v(p)'s. 

Let v ( l ) =  v(1,1), ~ ( 1 ) = ~ ( 1 ) =  1, v(2)= v(1,2). Inductively assume that 

{~:(p),/~ (p): p < po} and {v(p): p _-< po} have already been chosen. By the regu- 

larity of a and the observation in the first paragraph of this case, we can find 

r h such that f~(a) = 0 for all v <- V(po) and a _-> 3'e(po). 

By the same argument as in the case ,5 < )t we can find /Z(po) such that 

fv(a) = 0 for all v(1) <= v <= v(po) and a ~ H i  whenever r =< ~:(po) and tz --> U.(P,,). 

Again by the same argument as before we can find V(po+ 1) such that if 

v = > v(po+ 1), f~(a) = 0 for all a ~ H,~, = H~tP~ U 1.ll-r6(n),, r.(po) : "0 ~ Po}. 

If p~ is a limit ordinal we take v ( p 0 =  sup{v(p): p <p~}. These v(p)  and Ho 

satisfy the required conditions. 

Lemma 7.3 is an easy consequence of the previous lemma. Note that we no 

longer require the limit to be continuous. 

LEMMA 7.3. Let A be an uncountable regular cardinal, r an ordinal of 

cofinality A and {r~: r < A} a net increasing to r. Let {h~}v<A be a pointwise 

convergent net of continuous functions on [1, ~o" ]. Then there are constants c~ and 

c2 (not necessarily distinct), and for each (; < A a closed set H~ and an index v(~) 

such that 

(1) For each ~1 <~ ~2, n~l and H e are contained in disjoint intervals and 
~(~,) < ~(6). 

(2) H~ is homeomorphic to [1, co'~]. 
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(3) h ~te~(a) = c~ if a E lip and ~ >- p. 

(4) h ~e~(a) = c2 if a E H,, .and ~ < p. 

PROOF. Let h be the limit of {h~}. By Lemma 5.1(b), h is eventually constant 

on [1, to~). Thus there are constants c~ and c2, and a/3 < to" such that h(a)  = c~ if 

/3 =< a < to~, and h (to') = c2. To simplify the notation we shall assume that/3 = 1 

and that h~(to ~) = c2 for all v (and not only for v _-> Vo for some v0 < h ). Note that 

the result follows trivially from Lemma 7.2 if c~ = q ,  so we assume q # c2. 

Each function h, is thus eventually equal to c2, so f i n d / 3 ( v ) <  to" such that 

h~(a) = c2 for all a -_>/3(v), and define 

{ h~(a)-c~ if a_-</3(v) 

f~(a)= h ~ ( a ) - c 2  if a > /3(v) .  

Clearly f~ are continuous and converge pointwise to zero, thus by Lemma 7.2, 

there is a subset H of [1, to'] homeomorphic  to [1, to'], and a family ~ C{/v} of 

the same cardinality as h such that f ( a )  = 0 for all a ~ H and f E ~. Again, to 

simplify notation, assume that ~ = {/~}. 

We now define H e and v(~) inductively as follows: 

The ne t /3 (v)  is unbounded in [1, to'] (since h~(a)--* q for every a < to'). We 

can thus find v(1) such that H n [1,/3(v(1))] has type which is bigger than ~-~ and 

choose H~ C H  O [1,/3(v(1))] homeomorphic  to [1, to'~]. 

Inductively, if He, v(~) are already chosen for all ~ <~o we let /3 = 

sup{/3(~): ~ < s%}, and choose v(s%) such that the type of H n [/3,/3(V(~o))] is 

bigger than z~o, and choose H~,CH n [/3, fl(v(~0))] homeomorphic  to [1, to'~o]. 

PROOF OF LEMMA 7.1. The proof will be by induction on "0. The case ~/= 1 

follows from the disjointness lemma in a similar way to its application below and 

a separate proof will not be given. 

We also note that if B C D  then A = Bt~)CD c~)= E, and thus the condition 

A C E  will be automatically satisfied. 

We shall prove (and use for our induction hypothesis) a stronger version of (c), 

namely, that for every ~ > 0, Y can be found satisfying (a), (b) and (c'): 

(c') If y ~ Y  and a E A ,  then ]Ty(a)-Ty(b)I<=611y[I  for a l l b ~ B N  

[a + 1, a+]. (Taking ~ = e~ -  e certainly gives (c).) 

Let A be the cofinality of to ~ ()t = to if r/ has countable cofinality or is a 

successor). Notice that to ~§ has the same cofinality h. Let {rh: v < h} be a 

nondecreasing net with r/~ < ~ and r/v 1' ~7 (or r/~ = ~ / -  1 if r / i s  a successor). 
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The proof will consist of three steps. In the first two steps we shall construct 

certain pairs (Ev, D.) of type (rt~,/3) with Dv C D, and such that the D~'s are 

contained in disjoint intervals. To each of these pairs we shall in the last step 

apply the inductive hypothesis to find Yv's and pairs ( A .  B~) satisfying (a), (b) 

and (c') (for "~ and 6/3). 

The choice of the (E .  Dr) in the second step will be such that the spaces Y~ 

constructed here will satisfy the "disjointness condition" for 8/3 (i.e. 

supl Tf(d)r<-_~Sllfl[ for all dED. ,  and f E  sp{Y,,: v/v,,}}. 

If we consider now the sets A = U A~, B = U B~ and the space Yo = sp { Y~}, 

they will satisfy (a), (c') with 28/3, and (b), except that Ra(Yo) is not Co(A) but 

only (2~ ~1Co(A~))o. 

In order to find Y with RA (Y) = Co(A ), we have to add to Yo functions f~ C X 

such that f. I,~. = 0 if tx > u" f~ ] ~ =  1 if u =>/x, and such that if f C  sp{•} and 

a C A ,  then I T f (a) -  Tf(b)]<=~SllfJ] for all fC[a + l , a + ] n  B. 

If we can find such functions then it is obvious that Y = sp { Yo, {f~}} will satisfy 

RA(Y) = Co(A) and (a), (b), (c'). 

Finding these /~'s is the first step of the proof. In fact, we first find f~'s and 

subsets D',, of D such that if we put E ' =  (D'~) ~~ then: 

(i) Each (E'.,D'~) is a pair of type (r/ . /3).  

(ii) The D'2s are contained in disjoint intervals J~. 

(iii) f~ [D:= 0 if . > v, f .  [t~'.= 1 if v => tz. 

(iv) If fEsp{f,,}, and a C E ' ,  then IYf(a)-Tf(b)l<=~llfl[ for all 

f C  [a + 1,a +] N D:,,,. 

We then, in the second step, pass to a subset of the v's (of the same 

cardinality A) and to subsets Dv of the D ~.'s, homeomorphic to the D ;'s, such 

that the 8/3-"disjointness condition" will hold. We use these D~ and E,. = D(fl ~ 

in the last step as we described. We now pass to the details. 

Step I. Since oJ" has cofinality ~, and by the definition of r/~, we can find an 

increasing net {3~: z,< A} such that if we put D ' =  D n[3,~ + 1,7,+~], E "=  

(D'/,) (~, then (E", D") are pairs of type (rt~,/3). 

At this point we shall distinguish two cases according to A = oJ or A > r (This 

is the only place in the proof that these two cases are different.) 

A = oJ. Let g, be the unique function in X such that g~ [~; = 1, g~ [e~ = 0 for 

t z /  v. Since Tg, is continuous there is an interval L c[3,~ + 1, 3'~+~], with L n D"  

homeomorphic  to D"  such that the oscillation of Tg, on L is less than 8/6. By 

applying the disjointness lemma we can now pass to an infinite set M of 

{~: v < r and find for each v C M a subset D ;  of D ' A  L such that for all 
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v~EM, d E D ' , ,  and fEsp{g~:  v E M ,  V~Vo} we have ITf(d)l~A~llfl[. To 

simplify notation assume that M = {v: v < oJ} and we then define f~ = E" b~=l g/a. 

These f~'s and D'~'s satisfy (i)-(iv) as required. 

h > ~o. This is where we use Lemma 7.3. Let f~ be the unique function in X 

such that REf~ = XEnl~,~l. The net {X~n(~.~]} is a weak Cauchy net in Co(E), and 

since Re : X---> Co(E) is an isometry onto, {f.} is also a weak Cauchy net. Let 

h~ -- Tf., then h~ is a weak Cauchy net in Co(3,), and in particular it is a pointwise 

convergent net. We shall be interested only in the values of the h, 's  on D which 

is homeomorphic to [1,oJ~+'], and r =/3 + r/ has cofinality A >w.  Thus by 

Lemma 7.3 there are constants c~ and c2, subsets D'v of D and a subnet of {h~} 

(which, to simplify notation, we shall assume is the given net) such that 

(1) D'~ is homeomorphic to [1, ~o~+".]. 

(2) The D. ' s  are contained in disjoint intervals. 

(3) h,(a) = c~ if a E D~ and v --- tz. 

(4) h ~ ( a ) = c ~ i f  a E D ' , a n d  v < / z .  

(3) and (4) certainly imply that (iv) holds. In fact, if fEsp{ f~}  then T[ is 

constant on each D'~ hence (iv) holds with zero instead of 8/3. 

Step II. We apply the disjointness lemma for 8/3, the sets D"  and the spaces 

Z~ = {rE X: f vanishes on E\J~}. 

To simplify notation, assume that the resulting subset of {v: v < A} is the 

whole set {v: v < h}, and let D~ be the resulting subsets of D'~. 

Step 111. For each v, put Ev = (Dr) ~ .  By Lemma 6.2(a) there is an X~ CZv 

with RE~(X~)= Co(E~) which is determined over (E~, D,). 

We now use the inductive hypothesis for each X~, E ,  D,  and 8/3, as described 

in the beginning. 
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